Projective coordinates and projective space limit
نویسندگان
چکیده
منابع مشابه
Projective Coordinates Leak
Denoting by P = [k]G the elliptic-curve double-and-add multiplication of a public base point G by a secret k, we show that allowing an adversary access to the projective representation of P , obtained using a particular double and add method, may result in information being revealed about k. Such access might be granted to an adversary by a poor software implementation that does not erase the Z...
متن کاملOn two generalizations of semi-projective modules: SGQ-projective and $pi$-semi-projective
Let $R$ be a ring and $M$ a right $R$-module with $S=End_R(M)$. A module $M$ is called semi-projective if for any epimorphism $f:Mrightarrow N$, where $N$ is a submodule of $M$, and for any homomorphism $g: Mrightarrow N$, there exists $h:Mrightarrow M$ such that $fh=g$. In this paper, we study SGQ-projective and $pi$-semi-projective modules as two generalizations of semi-projective modules. A ...
متن کاملIntersection Computation in Projective Space Using Homogeneous Coordinates
There are many algorithms based on computation of intersection of lines, planes etc. Those algorithms are based on representation in the Euclidean space. Sometimes, very complex mathematical notations are used to express simple mathematical solutions. This paper presents solutions of some selected problems that can be easily solved by the projective space representation. Sometimes, if the princ...
متن کاملPseudo Ricci symmetric real hypersurfaces of a complex projective space
Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملProjective Hilbert space structures
A non-Hermitian complex symmetric 2 × 2-matrix toy model is used to study projective Hilbert space structures in the vicinity of exceptional points (EPs). The bi-orthogonal eigenvectors of a diagonalizable matrix are Puiseuxexpanded in terms of the root vectors at the EP. It is shown that the apparent contradiction between the two incompatible normalization conditions with finite and singular b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Physics B
سال: 2008
ISSN: 0550-3213
DOI: 10.1016/j.nuclphysb.2008.02.004